Ulster University Logo

In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles

Park, Margriet VDZ, Annema, Wijtske, Salvati, Anna, Lesniak, Anna, Elsaesser, Andreas, Barnes, Clifford, McKerr, George, Howard, Vyvyan, Lynch, Iseult, Dawson, Kenneth A, Piersma, Aldert H and de Jong, Wim H (2009) In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles. TOXICOLOGY AND APPLIED PHARMACOLOGY, 240 (1). pp. 108-116. [Journal article]

Full text not available from this repository.

DOI: 10.1016/j.taap.2009.07.019


While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining their ability to inhibit differentiation of embryonic stem cells into spontaneously contracting cardiomyocytes. Four well characterized silica nanoparticles of various sizes were used to investigate whether nanomaterials are capable of inhibition of differentiation in the embryonic stem cell test. Nanoparticle size distributions and dispersion characteristics were determined before and during incubation in the stem cell culture medium by means of transmission electron microscopy (TEM) and dynamic light scattering. Mouse embryonic stem cells were exposed to silica nanoparticles at concentrations ranging from 1 to 100 mu g/ml. The embryonic stem cell test detected a concentration dependent inhibition of differentiation of stem cells into contracting cardiomyocytes by two silica nanoparticles of primary size 10 (TEM 11) and 30 (TEM 34) nm while two other particles of primary size 80 (TEM 34) and 400 (TEM 248) nm had no effect up to the highest concentration tested. Inhibition of differentiation of stem cells occurred below cytotoxic concentrations, indicating a specific effect of the particles on the differentiation of the embryonic stem cells. The impaired differentiation of stem cells by such widely used particles warrants further investigation into the potential of these nanoparticles to migrate into the uterus, placenta and embryo and their possible effects on embryogenesis. (C) 2009 Elsevier Inc. All rights reserved.

Item Type:Journal article
Faculties and Schools:Faculty of Life and Health Sciences
Faculty of Life and Health Sciences > School of Biomedical Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute
Biomedical Sciences Research Institute > Genomic Medicine
ID Code:11528
Deposited By: Dr G McKerr
Deposited On:17 Feb 2010 11:08
Last Modified:08 May 2017 15:48

Repository Staff Only: item control page