GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L16310, doi:10.1029/2007GL030365, 2007

Click
Here
for
Full
Article

Fault heterogeneity and earthquake scaling

Alison Hetherington' and Sandy Steacy’

Received 13 April 2007; revised 25 July 2007; accepted 30 July 2007; published 24 August 2007.

[1] There is an on-going debate in the seismological
community as to whether stress drop is independent of
earthquake size and this has important implications for
earthquake physics. Here we investigate this question in a
simple 2D cellular automaton that includes heterogeneity.
We find that when the range of heterogeneity is low, the
scaling approaches that of constant stress drop. However,
clear deviations from the constant stress drop model are
observed when the range of heterogeneity is large. Further,
fractal distributions of strength show more significant
departures from constant scaling than do random ones.
Additionally, sub-sampling the data over limited magnitude
ranges can give the appearance of constant stress drop even
when the entire data set does not support this. Our results
suggest that deviations from constant earthquake scaling are
real and reflect the heterogeneity of natural fault zones, but
may not provide much information about the physics of
earthquakes. Citation: Hetherington, A., and S. Steacy (2007),
Fault heterogeneity and earthquake scaling, Geophys. Res. Lett.,
34, L16310, doi:10.1029/2007GL030365.

1. Introduction

[2] Whether rupture processes differ between large
and small earthquakes is of fundamental importance in
earthquake physics and has important implications for
earthquake predictability. Observations of power-law
magnitude frequency distributions, similarities in the
nucleation processes of large and small earthquakes
[Abercrombie and Mori, 1994], and the concept of self-
organized criticality have all been used to support
the argument that no significant difference exists. Other
observations, however, such as a bump (excess number of
large earthquakes) in the magnitude-frequency distribution
[e.g., Stirling et al., 1996] and the possibility that earth-
quakes begin with slow slip, the duration of which scales
with the eventual earthquake size [Ellsworth and Beroza,
1995], have been used to support exactly the opposite view.

[3] Over the past several years, this debate has extended
into the question of ‘“earthquake scaling”, in particular
whether average stress drops are the same for large and
small earthquakes; if they were this would support the
argument of self-similar rupture processes. Studies have
been undertaken using a variety of methods, involving both
new data [e.g., Abercrombie, 1995] and applying new
methods to existing data [e.g., Beeler et al., 2003]. The
data are usually collected over a limited range of magni-
tudes and have been analysed both in terms of energy
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scaling in plots of seismic energy vs. moment [e.g., Ide
and Beroza, 2001] and in terms of stress scaling with graphs
of seismic moment vs. source radius [e.g., Abercrombie,
1995]. To date the results have been inconclusive.

[4] Mayeda and Walter [1996] analysed 48 earthquakes
in the range M = 3.3 — 7.3 from the western US and found
that stress drop increased approximately with MJ2°. In an
analysis of 41 M = 0.5 — 5. earthquakes in the Long Valley
Caldera, Prejean and Ellsworth [2001] found that radiated
energy similarly increased with seismic moment and sug-
gested that this meant that large earthquakes were more
efficient than small ones. An earlier study, by Abercrombie
[1995] of over 100 events between M = —1. — 5.5 was
more ambiguous in that both constant stress drop and an
increase in energy with moment were observed; however
she concluded that the latter may have due to errors in
computing the seismic energy.

[5] By contrast, Ide and Beroza [2001] examined
6 previously published data sets, re-analysing 3 of them
by adjusting for potentially missing energy. They found a
nearly constant ratio of radiated energy to seismic moment
over 17 orders of earthquake moment. Abercrombie and
Rice [2005] carefully examined 30 well recorded earth-
quakes from Cajon Pass and found that while the data did
suggest increased stress drop and seismic energy with
increased moment, the errors in the data and the assump-
tions in the models precluded a clear resolution of the
constant scaling controversy.

[6] Despite this uncertainty, a few authors have attempted
to understand what might cause size dependency in earth-
quakes. Beeler et al. [2003] investigated the expected
relationship between apparent stress and static stress drop
and suggested that non-constant scaling may occur due to
systematic variations in static stress drop, although they did
not suggest what might cause such a pattern. Taking a
different approach, a study by Liu-Zeng et al. [2005]
modelled slip-length scaling, using a simple 1-D model of
slip heterogeneity where stress drop was determined by the
roll of a dice, and the length and width of the rupture were
statistically linked to the slip. Their results suggested
the possibility of a relationship between the level of
heterogeneity and the slip-length scaling observed.

[7] Here we use a self-similar model to investigate the
effects of heterogeneity on earthquake scaling. The model is
a cellular automaton in which we impose the heterogeneity
by controlling the patterns of cell strength using different
fractal distributions and varying ranges of strength.

2. Methodology

[s] We investigate event scaling in a model with dimen-
sions 512 by 64 cells and a cell-size of 0.25 km by 0.25 km
to simulate a fault of 128 km length by 16 km width. We
set the minimum strength of the cells at 1 MPa and
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systematically vary the maximum strength and distribution
of heterogeneity.

[v] Rather than iteratively adding the constant loading
stress at each time step, an equivalent method has been
developed which saves significant model run-time. The time
to the first cell failure is determined by first calculating the
time to failure 7(i) of each individual cell where i denotes
the number of the cell:

T(l) _ Uf(i) O_-loj:otal(i) (1)

o(1) is the failure stress (strength) of that cell, 0,/(7) is its
current stress and oy, 1s the stressing rate, here constant for
all cells. We then determine the minimum T(i) and denote
this Tj,mp and use this to calculate the stress increase, ojump,
to be added to all cells:

Ojump = Tjump X Oload (2)
[10] The stress on each cells is then updated to o,,,,(7):
Uﬂew(i) = UIOIHI(i) + q/14n1p (3)

leading to immediate rupture of the cell closest to failure.

[11] When a cell fails, its stress is redistributed according
to the rules developed by Steacy and McCloskey [1999] that
distribute more stress to unbroken neighbors than to those
that have previously failed in the event. These rules were
designed to produce a realistic stress concentration at the
edges of the rupture which initially scales with the square
root of the source radius and then asymptotically
approaches a constant value, consistent with causing model
earthquakes to propagate as slip pulses [Heaton, 1990]. An
alternative stress concentration rule in which stress is only
redistributed to unbroken cells [Steacy and McCloskey,
1998] produces similar results to those shown below for
large ranges of heterogeneity. However, the stress concen-
trations are unrealistically high and hence this model is not
explored in detail here.

[12] The redistributed stress may in turn cause neighbour-
ing cells to fail and hence all contiguous cells that fail as the
result of a single increment of stress are considered to be
part of the same event. Note that cells recover their strength
immediately (i.e. are instantaneously healed) and thus
subsequent cell breakages result in complete stress drop.

[13] In order to calculate the size of each event, we first
compute the average stress drop (A@) by:

A = ZNAU (4)

where ZAU is the total stress drop for the event and N is

the number of cells that failed at least once during it. Slip
and seismic moment are calculated from the empirical
relations of Kanamori and Anderson [1975]:

U=-—AG- (5)

where the rigidity ., is assumed to be 30 GPa and r is the
rupture length (and source radius) determined from the
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square root of the rupture area. Seismic moment is then
calculated using:

My = nAU (6)

where A is the rupture area.

[14] To investigate the effects of heterogeneity we
consider a range of models with different fractal dimensions
(D=14,1.7,2.0, 2.3) as well as random distributions over
a variety of strength ranges. The maximum strength range is
varied between 2—100 MPa. Ten realisations of each
strength distribution are investigated. Each run is carried
out for 5 million time-steps ensuring the occurrence of more
than 50,000 events.

[15] The fractals are created using the method of Turcotte
[1992], which allows fractals of a given dimension to be
generated from a Gaussian random distribution that is filtered
in the frequency domain by a user-specified parameter (3)
that determines the fractal dimension. This distribution in
turn depends on the seed to a random number generator and
hence different realisations with the same fractal dimension
can be generated by using different seeds, or the same seed
can be used to create fractals with different dimensions; an
example of the latter is shown in Figure 1.

[16] For each simulation we plot graphs of log seismic
moment vs. log source radius and compute the slope from a
least squares fit to the data. However, the large number of
small events was found to dominate the line fit because the
model produces a power-law distribution of event sizes. We
therefore choose 10 random events for each source radius
and use these values for the fit. If there are less than
10 values available, all of the data for that source radius
are used. To ensure that the random selection of the 10 data
does not control the fit, each random pick is carried out
10 times, and the average gradient of all the lines is
calculated. In all cases the standard deviation of the 10
gradients was found to be around 0.05, tests of the standard
deviation of 100 gradients were found to be on the same
order. Typical examples of the fits to the data are shown in
Figure 2.

3. Results

[17] We summarise our results in Figure 3 where we plot
the mean slope vs. the maximum strength (which approx-
imates the overall strength range as the minimum strength is
held constant) for each of the fractal models as well as for
the random distributions. All curves show the same general
pattern in that the slope increases with increased strength
range, however there are differences between the various
heterogeneity distributions.

[18] Let us first examine the trend of the random strength
distribution. At low strength ranges this has a gradient close
to the value of constant stress drop (3.0) but it increases
with increasing strength range to a value of approximately
3.25 at the maximum of 100 MPa. Our interpretation is that
at low strength ranges, the strongest cells are equally likely
to fail in small and large events, however as the strength
range increases failure of the strongest cells is progressively
confined to the largest events. This occurs because the
strength difference between weak and strong cells is such
that stress redistribution from weak cell failure is unlikely to
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Figure 1. Strength distribution over the range 1-10 MPa
for fractal dimensions (from top to bottom) D=1.4,D=1.7,
D =2.0, and D = 2.3.

cause failure of the strongest cells in the absence of strong
stress concentrations. Since the stress concentration
increases with event size, strong cells become progressively
more likely to break in larger events.

[19] For small strength ranges, the effect of strong cells
failing in small events results in no difference in mean stress
drop between large and small events and hence the slope is
very close to 3. For large strength ranges, however, the
mean stress drop increases as event size increases and this is
reflected in a steeper gradient.

[20] Similar general trends are observed for the fractal
distributions in that steeper slopes are observed for models
with larger strength ranges and we believe this is explained
by the above interpretation. However, a crossover is
observed in that at low strength ranges the models with
low fractal dimensions have lower gradients than those with
high fractal dimensions whereas at large strength ranges the
opposite is true.

[21] Our interpretation of the role of the strong patches
(asperities) in the model on this cross-over in gradient is

HETHERINGTON AND STEACY: EARTHQUAKE SCALING

L16310
36
35 ——— .-
- _,_4,___._,—?‘0—'_
34 /‘4 —f—— L
N 2l
T -8 Random
533 |-=-D14
= l_’./__.__/—-o——’—‘. |-+-D17
832 |-—Dp20
H D23
<
31
3
29

1] 20 40 60 80 100
Maximum Strength (MPa)

Figure 3. Graph showing the average gradients of
10 realisations of each strength range and distribution.
The error bars indicate the standard deviation for each set of
realisations. The slope of constant stress drop is 3.0. The
lines are shown for clarity and to highlight the crossovers
between the gradients of the different models.

based on visual inspection of ruptures at different strength
ranges. At low ranges, the smallest slope occurs in models
with a fractal dimension of 1.4. In these, we observe that
events of all sizes can involve partial rupture of the
asperities and hence there is little difference in the mean
stress drop between large and small events. By contrast, in
models with D = 2.3, large events generally involve
complete failure of the asperities and thus, even though
partial asperity failure is observed in the small events, there
is a greater difference in mean stress drop between the large
and small events and hence the gradient is steeper.

[22] At high strength ranges, we find, for fractal models
D = 1.4, that very few small to medium sized ruptures
involve breakage of the asperities, but that partial ruptures
of these occur in the largest events. This leads to a strong
increase in mean stress drop with event size and hence a
steep slope. In the D = 2.3 models, however, we once again
observe some participation of the asperities in the smaller
events (although to a lesser extent than in the lower strength
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Figure 2. Moment vs. source radius for strength range 1—10 MPa. Fractal dimensions are (left) D = 1.4 and (right) D = 2.0.
Lines of constant stress drop are shown in black ranging from 0.1 MPa to 100 MPa and the red line is the best fit to the data.
Note the variation in moment release, and hence stress drop, over all but the very largest events.
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Figure 4. (left) Frequency of occurrence of gradients sampled over a restricted moment range, for a fractal distribution of
2.0 and a maximum strength of 10MPa. The data are divided into four seismic moment ranges; <10'> Nm, 10'°~10'7 Nm,
10'7-10" Nm, and >10" Nm. Here the mean value is 2.93 and the median 2.97 while the gradient calculated over the
entire data range is apgproximately 3.2. (right) Same as for Figure 4 (left), but sampled over 3 orders of seismic moment;
<10" Nm, 10"°-10"* Nm, and >10"® Nm. Note that the diagram contains fewer total fits due to the larger moment
range. The histogram shows a shift to higher values with respect to Figure 4 (left) and has a mean value of 3.13 and median

of 3.07.

ranges), while the largest tend to involve nearly complete
asperity failure. This means that the difference in stress drop
between large and small events is less than for the D = 1.4
models.

[23] In order to better compare our results with published
analyses, we investigate the effects of small data sets by
sub-sampling results from various models. Specifically, we
randomly choose sets of 20 data points over a restricted
range of event size (either 2 or 3 orders of seismic moment,
consistent with Ide and Beroza [2001]) and calculate the
slope for these 20 points. We repeat this 100 times for each
moment range and in Figure 4 plot histograms of the
frequency of occurrence of these gradients for one realisa-
tion of the model.

[24] The histograms show that for fractal distributions,
using a restricted range of magnitudes results in much lower
gradient values than those obtained using the full range of
data. Additionally, increasing the magnitude range increases
the gradients. This is not observed for the random strength
distributions, however, because there is very little variation
in magnitude for a given source radius and hence the errors
due to sub-sampling are extremely small.

4. Discussion

[25] In a self-similar model in which the only difference
between small and large events is that the latter develop
greater stress concentrations, we find that — in the presence
of heterogeneity — large events experience greater stress
drops than small ones. Our interpretation is that strong
patches (asperities) preferentially fail in large events due
to the presence of larger stress concentrations.

[26] We further observe that sampling only small numbers
of events over a limited magnitude range can erroneously
lead to interpretations of constant or near-constant scaling, at
least for the fractal models. This appears to be because these
models exhibit considerable variations in moment release for
any given source radius and hence a small sub-sample can
lead to significant variability in the measured slope. The
effect of sub-sampling decreases when the moment range
over which the data are selected increases (even with the
same number of data points).

[27] Our results suggest that increasing stress drop with
increasing seismic moment may be a real phenomenon,

resulting from fault heterogeneity, but this departure from
constant scaling does not require that there be differences in
the physics of large and small earthquakes.
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