Ulster University Logo

Characterisation of a Line-Axis Solar Thermal Collector for Building Façade Integration

Ramirez-Stefanou, Miguel, Mallick, Tapas, Smyth, Mervyn, Mondol, Jayanta Deb, Zacharopoulos, Aggelos and Hyde, Trevor (2011) Characterisation of a Line-Axis Solar Thermal Collector for Building Façade Integration. Sustainability in Energy and Buildings, 7 (5). pp. 277-287. [Journal article]

Full text not available from this repository.

URL: http://www.springerlink.com/content/k0gm101502733523/

DOI: 10.1007/978-3-642-17387-5_28


The integration of concentrating solar thermal collectors into the structural envelope of buildings can significantly increase the cost effectiveness of solar thermal utilisation in the UK. The key, however, to their wide scale application is performance. Typically, most solar thermal collectors are mounted on inclined roof structures, thus presenting an optimal surface area for solar gain. Vertical building facades offer an alternative mounting surface and whilst they may have an overall lower level of incident solar radiation, the collector receives a more uniform annual distribution of solar radiation, reducing potential summer over heating problems. Furthermore, facade integration is beneficial to the building performance as the collector unit results in a higher U-value realising higher building heat retention. In concentrating solar thermal collector systems, the absorbing surface area is reduced relative to that of the aperture, leading to a reduction in the overall heat loss from the system, hence improving thermal efficiency. To maximise collection in a vertically mounted concentrating solar thermal collector however, the concentrator profile should be optimised to benefit solar collection relative to the mounting inclination. This paper presents the optical and experimental investigation of a low concentration line axis solar thermal collector employing symmetric and asymmetric CPC geometries. The potential for collected solar radiation when façade integrated has been investigated with the use of three-dimensional ray trace. Several prototype units were fabricated and experimentally evaluated. A series of fluid flow configurations (serpentine and parallel) using different flow velocities have been investigated and a range of slope angles (β) considered. Results from this study have shown that this type of concentrating solar thermal collector has particular application for domestic hot water production and that the design can effectively operate in the vertical orientation and is suitable for building façade integration in Northern European locations.

Item Type:Journal article
Faculties and Schools:Faculty of Art, Design and the Built Environment
Faculty of Art, Design and the Built Environment > School of the Built Environment
Research Institutes and Groups:Built Environment Research Institute
Built Environment Research Institute > Centre for Sustainable Technologies (CST)
ID Code:17991
Deposited By: Dr Aggelos Zacharopoulos
Deposited On:12 Apr 2011 14:40
Last Modified:12 Apr 2011 14:40

Repository Staff Only: item control page