Ulster University Logo

Microwave bonding of poly(methylmethacrylate) microfluidic devices using a conductive polymer

Holmes, RJ, McDonagh, C, McLaughlin, JAD, Mohr, S, Goddard, NJ and Fielden, PR (2011) Microwave bonding of poly(methylmethacrylate) microfluidic devices using a conductive polymer. Journal of Physics and Chemistry of Solids, 72 (6). pp. 626-629. [Journal article]

[img] PDF - Published Version
Restricted to Repository staff only


URL: http://dx.doi.org/10.1016/j.jpcs.2011.02.005

DOI: doi:10.1016/j.jpcs.2011.02.005


Component binding within microfluidic devices is a problem that has long been seeking a solution. In this investigation, the use of microwave radiation to seal PMMA components has been investigated using polyaniline as an absorber that is capable of inducting interfacial bonding. Straight microchannels were machined into PMMA using a Datron CAT3DM6 CNC machine with widths and depths across a range of 100–1000 μm. Prototype fluidic devices were prepared with channel patterns utilizing varying feature sizes, bends and flow profiling to demonstrate the application of the technique to real microfluidic devices. Experimental data illustrated the successful bonding of channels in the range stated previously and bonding (tensile) strength was assessed via pull tests on bonded PMMA using an Engstrom Zwick 100 tensile testing system (Engstrom Ltd, US). Coherent, defect free seals were attained with breakage tests requiring an excess of 1 kN force.

Item Type:Journal article
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Engineering
Research Institutes and Groups:Engineering Research Institute
Engineering Research Institute > Nanotechnology & Integrated BioEngineering Centre (NIBEC)
ID Code:20586
Deposited By: Mrs Ann Blair
Deposited On:12 Dec 2011 11:25
Last Modified:07 Apr 2014 09:21

Repository Staff Only: item control page