Ulster University Logo

A New Learning Algorithm for Adaptive Spiking Neural Networks

Wang, Jinling, Belatreche, Ammar, Maguire, Liam and McGinnity, Martin (2011) A New Learning Algorithm for Adaptive Spiking Neural Networks. In: International Conference on Neural Information Processing, China. Springer. Vol 7062 8 pp. [Conference contribution]

Full text not available from this repository.

URL: http://www.springerlink.com/content/gm84572222360351/

DOI: 10.1007/978-3-642-24955-6_55


This paper presents a new learning algorithm with an adaptive structure for Spiking Neural Networks (SNNs). STDP and anti-STDP learning windows were combined with a ’virtual’ supervisory neuron which remotely controls whether the STDP or anti-STDP window is used to adjust the synaptic efficacies of the connections between the hidden and the output layer. A simple new technique for updating the centres of hidden neurons is embedded in the hidden layer. The structure is dynamically adapted based on how close are the centres of hidden neurons to the incoming sample. Lateral inhibitory connections are used between neurons of the output layer to achieve competitive learning and make the network converge quickly. The proposed learning algorithm was demonstrated on the IRIS and the Wisconsin Breast Cancer benchmark datasets. Preliminary results show that the proposed algorithm can learn incoming data samples in one epoch only and with comparable accuracy to other existing training algorithms.

Item Type:Conference contribution (Paper)
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Intelligent Systems
Research Institutes and Groups:Computer Science Research Institute > Intelligent Systems Research Centre
Computer Science Research Institute
ID Code:20672
Deposited By: Dr Ammar Belatreche
Deposited On:17 Jan 2012 14:57
Last Modified:02 May 2017 14:56

Repository Staff Only: item control page