Ulster University Logo

The effect of urea and ammonia treatments on the survival of Salmonella spp. and Yersinia enterocolitica in pig slurry

Bolton, D J, Ivory, C and McDowell, D.A. (2013) The effect of urea and ammonia treatments on the survival of Salmonella spp. and Yersinia enterocolitica in pig slurry. Journal of Applied Microbiology, 114 (1). pp. 134-140. [Journal article]

[img] PDF - Published Version
Indefinitely restricted to Repository staff only.

314kB

DOI: 10.1111/jam.12003

Abstract

Aims: The objective of this study was to investigate the survival of Salmonella and Yersinia enterocolitica strains in pig slurry and evaluate urea and ammonia as disinfection strategies.Methods and Results: Salmonella Anatum, Salmonella Derby, Salmonella Typhimurium DT19 and Y. enterocolitica bioserotypes 4, O:3, 2, O:5,27 and 1A, O:6,30 were selectively marked by insertion of the plasmid, pGLO encoding for green fluorescent protein and for ampicillin resistance. Strain cocktails were inoculated into fresh pig slurry (control), slurry treated with urea [final concentration 2% w/w, (0.33 mol-1)] and slurry treated with ammonia [final concentration 0.5% w/w, (0.3 mol l-1)] and stored at 4, 14 and 25°C. Bacterial counts were determined at regular intervals on xylose lysine deoxycholate agar (XLD), and XLD supplemented with ampicillin (01mgml1) and arabinose (06mgml1) for Salmonella and cefsulodin-irgasan-novobiocin agar (CIN) and CIN supplemented with ampicillin and arabinose for Y. enterocolitica. The pH of the control-, urea- and ammonia-treated samples ranged from 7.1 to 7.7, 8.8 to 8-9 and 8.0 to 8-3, respectively. Salmonella D4 values ranged from 2.71 to 21.29 days, D14 values from 2.72 to 11.62 days and D25 values from1.76 to 6.85 days. The equivalent D values ranges for the Y. enterocolitica strains were 3.7–19.23, 1.8–16.67 and 1.63–7.09 days, respectively. Treatment significantly (P < 0.01) affected D values with control > ammonia > urea, as did incubation temperature; 4 > 14 > 25°C.Conclusions: Urea and to a lesser extent ammonia may be used to disinfect Salmonella and/or Y. enterocolitica-contaminated pig slurry, decreasing the storage time required while increasing its fertilizer value.Significance and Impact of the Study: This study presents data supporting the treatment of pig slurry to kill important zoonotic agents, thereby reducing environmental contamination, cross-infection of other animals and decreasing zoonotic disease in the food chain.

Item Type:Journal article
Faculties and Schools:Faculty of Life and Health Sciences
Faculty of Life and Health Sciences > School of Health Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute
ID Code:24919
Deposited By: Professor David McDowell
Deposited On:12 Feb 2013 09:52
Last Modified:10 May 2017 11:26

Repository Staff Only: item control page