Ulster University Logo

Combining rough decisions for intelligent text mining using Dempster's rule

Bi, Yaxin, McClean, Sally and Anderson, Terry (2006) Combining rough decisions for intelligent text mining using Dempster's rule. Artificial Intelligence Review, 26 (3). pp. 191-209. [Journal article]

Full text not available from this repository.

Abstract

An important issue in text mining is how to make use of multiple pieces knowledge discovered to improve future decisions. In this paper, we propose a new approach to combining multiple sets of rules for text categorization using Dempster’s rule of combination. We develop a boosting-like technique for generating multiple sets of rules based on rough set theory and model classification decisions from multiple sets of rules as pieces of evidence which can be combined by Dempster’s rule of combination. We apply these methods to 10 of the 20-newsgroups—a benchmark data collection (Baker and McCallum 1998), individually and in combination. Our experimental results show that the performance of the best combination of the multiple sets of rules on the 10 groups of the benchmark data is statistically significant and better than that of the best single set of rules. The comparative analysis between the Dempster–Shafer and the majority voting (MV) methods along with an overfitting study confirm the advantage and the robustness of our approach.

Item Type:Journal article
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Mathematics
Research Institutes and Groups:Computer Science Research Institute
Computer Science Research Institute > Artificial Intelligence and Applications
ID Code:25503
Deposited By: Dr Yaxin Bi
Deposited On:20 Jan 2016 15:35
Last Modified:20 Jan 2016 15:35

Repository Staff Only: item control page