Ulster University Logo

An Effective Combination of Multiple Classifiers for Toxicity Prediction

Guo, Gongde, Neagu, Daniel, Huang, Xuming and Bi, Yaxin (2006) An Effective Combination of Multiple Classifiers for Toxicity Prediction. In: Fuzzy Systems and Knowledge Discovery Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 481-490. ISBN 978-3-540-45916-3 [Book section]

Full text not available from this repository.


The performance of individual classifiers applied to complex data sets has for predictive toxicology a significant importance. An investigation was conducted to improve classification performance of combinations of classifiers. For this purpose some representative classification methods for individual classifier development have been used to assure a good range for model diversity. The paper proposes a new effective multi-classifier system based on Dempster’s rule of combination of individual classifiers. The performance of the new method has been evaluated on seven toxicity data sets. The classification accuracy of the proposed combination models achieved, according to our initial experiments, 2.97% better average than that of the best individual classifier among five classification methods (Instance-based Learning algorithm, Decision Tree, Repeated Incremental Pruning to Produce Error Reduction, Multi-Layer Perceptrons and Support Vector Machine) studied.

Item Type:Book section
Keywords:Classification, Multiple Classifiers, Toxicity Prediction
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Mathematics
Research Institutes and Groups:Computer Science Research Institute
Computer Science Research Institute > Artificial Intelligence and Applications
ID Code:25508
Deposited By: Dr Yaxin Bi
Deposited On:21 Jan 2016 16:31
Last Modified:21 Jan 2016 16:31

Repository Staff Only: item control page