Ulster University Logo

Semiconducting quantum confined silicon-tin alloyed nanocrystals prepared by ns pulsed laser ablation in water

Svrcek, V, Mariotti, D, Blackley, RA, Zhou, WZ, Nagai, T, Matsubara, K and Kondo, M (2013) Semiconducting quantum confined silicon-tin alloyed nanocrystals prepared by ns pulsed laser ablation in water. Nanoscale, 5 . pp. 6725-6730. [Journal article]

[img]
Preview
PDF - Published Version
471kB

URL: http://dx.doi.org/10.1039/C3NR00891F

DOI: 10.1039/C3NR00891F

Abstract

Here we demonstrate the material's synthetic feasibility for semiconducting alloyed silicon-tin nanocrystals (SiSn-NCs) with quantum confinement effects. An environmentally friendly synthesis is achieved by ns laser ablation of amorphous SiSn in water at ambient conditions. Plasmas generated in the liquid by laser pulses are characterized by spatial confinement with very high pressure (GPa), which allowed the growth of the SiSn-NCs via kinetic pathways. We further illustrate that surface engineering by a direct-current atmospheric pressure microplasma is capable of tailoring the SiSn-NCs surface properties without the need for lengthy surfactants, resulting in room temperature photoluminescence (PL); the PL peak wavelength is red-shifted by more than 250 nm with respect to the PL peak wavelengths observed for comparable elemental silicon nanocrystals.

Item Type:Journal article
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Engineering
Research Institutes and Groups:Engineering Research Institute
Engineering Research Institute > Nanotechnology & Integrated BioEngineering Centre (NIBEC)
ID Code:26482
Deposited By: Professor Davide Mariotti
Deposited On:07 Aug 2013 09:55
Last Modified:17 Oct 2017 16:10

Repository Staff Only: item control page