Ulster University Logo

Meal-induced 24-hour profile of circulating glycated insulin in type 2 diabetic subjects measured by a novel radioimmunoassay

Lindsay, JR, McKillop, Aine, Mooney, MH, Flatt, Peter, Bell, PM and O'Harte, Finbarr (2003) Meal-induced 24-hour profile of circulating glycated insulin in type 2 diabetic subjects measured by a novel radioimmunoassay. METABOLISM-CLINICAL AND EXPERIMENTAL, 52 (5). pp. 631-635. [Journal article]

Full text not available from this repository.

DOI: 10.1053/meta.2003.50105


Increasing evidence supports a role for glycated insulin in the insulin-resistant state of type 2 diabetes. We measured 24-hour profiles of plasma glycated insulin, using a novel radioimmunoassay (RIA), to evaluate the effects of meal stimulation and intermittent fasting on circulating concentrations of plasma glycated insulin in type 2 diabetes. Patients (n = 6; hemoglobin A(1c) [HbA(1c)], 7.2% +/- 0.6%; fasting plasma glucose, 7.4 +/- 0.7 mmol/L; body mass index [BMI], 35.7 +/- 3.5 kg/m(2); age, 56.3 +/- 4.4 years) were admitted for 24 hours and received a standardized meal regimen. Half-hourly venous samples were taken for plasma glycated insulin, glucose, insulin, and C-peptide concentrations between 8 Am and midnight and 2-hourly overnight. The mean plasma glycated insulin concentration over 24 hours was 27.8 +/- 1.2 pmol/L with a mean ratio of insulin:glycated insulin of 11:1. Circulating glucose, insulin, C-peptide, and glycated insulin followed a basal and meal-related pattern with most prominent increments following breakfast, lunch, and evening meal, respectively. The mean concentrations of glycated insulin during the morning, afternoon, evening, and night-time periods were 24.4 +/- 2.5, 28.7 +/- 2.3, 31.1 +/- 2.1, and 26.2 +/- 1.5 pmol/L, respectively, giving significantly higher molar ratios of insulin:glycated insulin of 18.0:1, 14.2:1, and 12.7:1 compared with 7.01 at night (P < 0.01 to P < 0.001). These data demonstrate that glycated insulin circulates at relatively high concentrations in type 2 diabetes with a diurnal pattern of basal and meal-stimulated release. A higher proportion of glycated insulin circulates at night suggestive of differences in metabolic clearance compared with native insulin. (C) 2003 Elsevier Inc. All rights reserved.

Item Type:Journal article
Faculties and Schools:Faculty of Life and Health Sciences
Faculty of Life and Health Sciences > School of Biomedical Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute
Biomedical Sciences Research Institute > Diabetes
ID Code:3040
Deposited By: Professor Peter Flatt
Deposited On:14 Jan 2010 15:35
Last Modified:09 May 2016 10:48

Repository Staff Only: item control page