Ulster University Logo

Efficient Translation of Dnmt1 Requires Cytoplasmic Polyadenylation and Musashi Binding Elements

Rutledge, Charlotte E., Lau, Ho-Tak, Mangan, Hazel, Hardy, Linda L., Sunnotel, Olaf, Guo, Fan, MacNicol, Angus M., Walsh, Colum and Lees Murdock, Diane (2014) Efficient Translation of Dnmt1 Requires Cytoplasmic Polyadenylation and Musashi Binding Elements. PLoS ONE, 9 (2). e88385. [Journal article]

Full text not available from this repository.

URL: http://dx.doi.org/10.1371/journal.pone.0088385

DOI: doi:10.1371/journal.pone.0088385


Regulation of DNMT1 is critical for epigenetic control of many genes and for genome stability. Using phylogenetic analysis we characterized a block of 27 nucleotides in the 3′UTR of Dnmt1 mRNA identical between humans and Xenopus and investigated the role of the individual elements contained within it. This region contains a cytoplasmic polyadenylation element (CPE) and a Musashi binding element (MBE), with CPE binding protein 1 (CPEB1) known to bind to the former in mouse oocytes. The presence of these elements usually indicates translational control by elongation and shortening of the poly(A) tail in the cytoplasm of the oocyte and in some somatic cell types. We demonstrate for the first time cytoplasmic polyadenylation of Dnmt1 during periods of oocyte growth in mouse and during oocyte activation in Xenopus. Furthermore we show by RNA immunoprecipitation that Musashi1 (MSI1) binds to the MBE and that this element is required for polyadenylation in oocytes. As well as a role in oocytes, site-directed mutagenesis and reporter assays confirm that mutation of either the MBE or CPE reduce DNMT1 translation in somatic cells, but likely act in the same pathway: deletion of the whole conserved region has more severe effects on translation in both ES and differentiated cells. In adult cells lacking MSI1 there is a greater dependency on the CPE, with depletion of CPEB1 or CPEB4 by RNAi resulting in substantially reduced levels of endogenous DNMT1 protein and concurrent upregulation of the well characterised CPEB target mRNA cyclin B1. Our findings demonstrate that CPE- and MBE-mediated translation regulate DNMT1 expression, representing a novel mechanism of post-transcriptional control for this gene.

Item Type:Journal article
Keywords:DNA methyltransferase, DNA methylation, cytoplasmic polyadenylation, oocytes, stem cells, Xenopus, CPEB, musashi, pumilio
Faculties and Schools:Faculty of Life and Health Sciences > School of Biomedical Sciences
Faculty of Life and Health Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute > Genomic Medicine
Biomedical Sciences Research Institute
ID Code:30557
Deposited By: Dr Diane Lees Murdock
Deposited On:15 Nov 2014 12:55
Last Modified:15 Nov 2014 12:55

Repository Staff Only: item control page