Ulster University Logo

Cache Performance Models for Quality of Service Compliance in Storage Clouds

Sithole, Ernest, McConnell, Aaron, McClean, Sally, Parr, Gerard, Scotney, Bryan, Moore, Adrian and Bustard, David (2013) Cache Performance Models for Quality of Service Compliance in Storage Clouds. Journal of Cloud Computing, 2 (1). Article 1-(24 pages). [Journal article]

[img] PDF - Published Version

URL: http://www.journalofcloudcomputing.com/content/2/1/1

DOI: 10.1186/2192-113X-2-1


With the growing popularity of cloud-based data centres as the enterprise IT platform of choice, there is a need for effective management strategies capable of maintaining performance within SLA and QoS parameters when responding to dynamic conditions such as increasing demand. Since current management approaches in the cloud infrastructure, particularly for data-intensive applications, lack the ability to systematically quantify performance trends, static approaches are largely employed in the allocations of resources when dealing with volatile demand in the infrastructure. We present analytical models for characterising cache performance trends at storage cache nodes. Practical validations of cache performance for derived theoretical trends show close approximations between modelled characterisations and measurement results for user request patterns involving private datasets and publicly available datasets. The models are extended to encompass hybrid scenarios based on concurrent requests of both private and public content. Our models have potential for guiding (a) efficient resource allocations during initial deployments of the storage cloud infrastructure and (b) timely interventions during operation in order to achieve scalable and resilient service delivery.

Item Type:Journal article
Keywords:Storage cloud, Enterprise applications, Cache performance, Optimisation
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Information Engineering
Research Institutes and Groups:Computer Science Research Institute
Computer Science Research Institute > Information and Communication Engineering
ID Code:30887
Deposited By: Professor Bryan Scotney
Deposited On:20 Jan 2015 15:49
Last Modified:20 Jan 2015 15:49

Repository Staff Only: item control page