Standardisation of Image Quality in Radiology Departments: An International Investigation

DATE: Thursday, December 04 2003
START TIME: 12:15 PM
END TIME: 12:25 PM
LOCATION: Lakeside Center - Poster Exhibits - Space 147HS-p

PURPOSE
Diagnostic efficacy of X-ray images within radiology departments is dependent on image quality. Work by our group has demonstrated that a close relationship exists between image quality, radiological equipment and X-ray techniques. These factors have been show to vary widely across Irish hospitals for a number of examination types. The aim of the current work is to evaluate the level of image quality variation that exists within and between 24 hospitals in Oman, Kuwait, UK and Ireland and to relate this to equipment used, techniques employed and radiation dose delivered.

METHODS AND MATERIALS
Digital and analogue diagnostic imaging departments, in the aforementioned countries, were involved in the study. X-ray images of patients following chest, abdomen, pelvis and lumbar spine examinations were analysed by an evaluative panel consisting of experienced clinicians. Visual grading analysis (VGA) based on anatomical criteria, was performed using gold standard reference images and technical and procedural parameters were recorded. Psychophysical tests using line pair and contrast detail phantoms were also carried out and radiation doses were monitored using thermoluminescent dosemeters.

RESULTS
The data collected have demonstrated significant image quality variations within and between hospitals for all countries involved. Technical and procedural causal agents have been identified such as beam energy, acquisition system type, detector focus distance and radiographic technique employed. Options for improving and standardising practice have been noted. Poor correlation between VGA analysis and psychophysical tests was shown.
CONCLUSION
Image quality within and between radiology departments varies widely. The data provided by this work has facilitated identification of specific areas of improvement thus enabling optimisation of chest, abdomen, pelvis and lumbar spine X-ray examinations at lowest risk to the patient.