Ulster University Logo

Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice.

McKillop, Aine, Moran, BM, Abdel-Wahab, YHA, Gormley, NM and Flatt, Peter (2016) Metabolic effects of orally administered small-molecule agonists of GPR55 and GPR119 in multiple low-dose streptozotocin-induced diabetic and incretin-receptor-knockout mice. Diabetologia, 59 (12). pp. 2674-2685. [Journal article]

[img] Text - Accepted Version
4MB
[img] Text - Supplemental Material
Restricted to Repository staff only

132kB

DOI: 10.1007/s00125-016-4108-z

Abstract

AIMS/HYPOTHESIS: Abnormal cannabidiol (Abn-CBD) and AS-1269574 are potent selective agonists for GPR55 and GPR119, respectively. The present study evaluated the actions and ability of these small-molecule agonists to counteract experimental diabetes in mice.METHODS: Diabetes was induced in NIH Swiss mice by five consecutive daily intraperitoneal injections of 40 mg/(kg body weight) streptozotocin. Diabetic mice received daily oral administration of Abn-CBD or AS-1269574 (0.1 μmol/kg) or saline vehicle (0.9% wt/vol. NaCl) over 28 days. Body weight, food intake, fluid intake, plasma glucose, insulin, glucose tolerance, insulin release, lipid profile and pancreatic morphology were examined. Mechanism of action of agonists was assessed in acute studies using incretin-receptor-knockout mice.RESULTS: Abn-CBD and AS-1269574 decreased plasma glucose (20-26%, p < 0.05) and increased circulating insulin (47-48%, p < 0.05) by 10-28 days, compared with saline-treated diabetic controls. Food intake and polydipsia were reduced by both agonists (21-23%, p < 0.05 and 33-35%, p < 0.01, respectively). After 28 days of treatment, plasma glucagon concentrations were reduced (p < 0.01) and glucose tolerance was enhanced by 19-44% by Abn-CBD (p < 0.05 or p < 0.001) and AS-1269574 (p < 0.05 to p < 0.001). Plasma insulin responses were improved (p < 0.01) and insulin resistance was decreased (p < 0.05 or p < 0.01) in both Abn-CBD- and AS-1269574-treated groups. Triacylglycerols were decreased by 19% with Abn-CBD (p < 0.05) and 32% with AS-1269574 (p < 0.01) while total cholesterol was reduced by 17% (p < 0.01) and 15% (p < 0.05), respectively. Both agonists enhanced beta cell proliferation (p < 0.001) although islet area was unchanged. Acute studies in Gipr- and Glp1r-knockout mice revealed an important role for the glucagon-like peptide 1 (GLP-1) receptor in the actions of both agonists, with the glucose-lowering effects of Abn-CBD also partly mediated through the glucose-dependent insulinotropic peptide (GIP) receptor.CONCLUSIONS/INTERPRETATION: These data highlight the potential for fatty acid G-protein-coupled receptor-based therapies as novel insulinotropic and glucose-lowering agents acting partly through the activation of incretin receptors.

Item Type:Journal article
Keywords:Beta cell regeneration; Diabetes; Fatty acid agonists; G-protein-coupled receptors; Glucose homeostasis; Insulin secretion; Multiple low-dose streptozotocin
Faculties and Schools:Faculty of Life and Health Sciences > School of Biomedical Sciences
Faculty of Life and Health Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute
Biomedical Sciences Research Institute > Diabetes
ID Code:36080
Deposited By: Dr Nigel Irwin
Deposited On:18 Oct 2016 08:29
Last Modified:17 Oct 2017 16:26

Repository Staff Only: item control page