Ulster University Logo

Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas

Askari, Sadegh, Ul Haq, Atta, Macias-Montero, Manuel, Levchenko, Igor, Yu, Fengjiao, Zhou, Wuzong, Ostrikov, Kostya (Ken), Maguire, PD, Svrcek, Vladimir and Mariotti, D (2016) Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas. Nanoscale, 8 . pp. 17141-17149. [Journal article]

[img] Text - Published Version
[img] Text - Supplemental Material
Restricted to Repository staff only


URL: http://dx.doi.org/10.1039/C6NR03702J

DOI: 10.1039/C6NR03702J


Highly size-controllable synthesis of free-standing perfectly crystalline silicon carbide nanocrystals has been achieved for the first time through a plasma-based bottom-up process. This low-cost, scalable, ligand-free atmospheric pressure technique allows fabrication of ultra-small (down to 1.5 nm) nanocrystals with very low level of surface contamination, leading to fundamental insights into optical properties of the nanocrystals. This is also confirmed by their exceptional photoluminescence emission yield enhanced by more than 5 times by reducing the nanocrystals sizes in the range of 1-5 nm, which is attributed to quantum confinement in ultra-small nanocrystals. This method is potentially scalable and readily extendable to a wide range of other classes of materials. Moreover, this ligand-free process can produce colloidal nanocrystals by direct deposition into liquid, onto biological materials or onto the substrate of choice to form nanocrystal films. Our simple but efficient approach based on non-equilibrium plasma environment is a response to the need of most efficient bottom-up processes in nanosynthesis and nanotechnology.

Item Type:Journal article
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Engineering
Research Institutes and Groups:Engineering Research Institute
Engineering Research Institute > Nanotechnology & Integrated BioEngineering Centre (NIBEC)
ID Code:36213
Deposited By: Professor Davide Mariotti
Deposited On:29 Nov 2016 13:35
Last Modified:17 Oct 2017 16:26

Repository Staff Only: item control page