Ulster University Logo

Growth, structural and plasma illumination properties of nanocrystalline diamond-decoratedgraphene nanoflakes

Sankaran, KJ, Chang, TH, Bikkarolla,, SK, Roy, SS, Papakonstantinou, P, Drijkoningen,, S, Pobedinskas, P, Van Bael, MK, Tai, NH, Lin, IN and Haenen, K (2016) Growth, structural and plasma illumination properties of nanocrystalline diamond-decoratedgraphene nanoflakes. RSC Advances, 6 . pp. 63178-63184. [Journal article]

[img] Text - Published Version

URL: http://pubs.rsc.org/en/Content/ArticleLanding/2016/RA/C6RA07116C#!divAbstract

DOI: 10.1039/c6ra07116c


The improvement of the plasma illumination (PI) properties of a microplasma device due to the application of nanocrystalline diamond-decorated graphene nanoflakes (NCD-GNFs) as a cathode is investigated. The improved plasma illumination (PI) behavior is closely related to the enhanced field electron emission (FEE) properties of the NCD-GNFs. The NCD-GNFs possess better FEE characteristics with a low turn-on field of 9.36 V/ mm to induce the field emission, a high FEE current density of 2.57 mA/ cm2 and a large field enhancement factor of 2380. The plasma can be triggered at a low voltage of 380 V, attaining a large plasma current density of 3.8 mA /cm2 at an applied voltage of 570 V. In addition, the NCD-GNF cathode shows enhanced lifetime stability of more than 21 min at an applied voltage of 430 V without showing any sign of degradation, whereas the bare GNFs can last only 4 min. The superior FEE and PI properties of the NCD-GNFs are ascribed to the unique combination of diamond and graphene. Transmission electron microscopic studies reveal that the NCD-GNFs contain nano-sized diamond films evenly decorated on the GNFs. Nanographitic phases in the grain boundaries of the diamond grains form electron transport networks that lead to improvement in the FEE characteristics of the NCD-GNFs.

Item Type:Journal article
Keywords:graphene nanoflakes, nanocrystalline diamond, electron field emission
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Engineering
Research Institutes and Groups:Engineering Research Institute
Engineering Research Institute > Nanotechnology & Integrated BioEngineering Centre (NIBEC)
ID Code:36968
Deposited By: Professor Pagona Papakonstantinou
Deposited On:09 Mar 2017 09:41
Last Modified:17 Oct 2017 16:27

Repository Staff Only: item control page