Ulster University Logo

Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipid biosurfactant

Liley, Jessica, Thomas, Robert K, Tucker, Ian M, Petkov, Jordan T, Stevebson, Paul S, Banat, Ibrahim M, Marchant, R, Rudden, Michelle, Terry, Ann and Gtillo, Isabelle (2016) Self-assembly in dilute mixtures of non-ionic and anionic surfactants and rhamnolipid biosurfactant. Journal of Colloid and Interface Science, 487 . pp. 493-503. [Journal article]

[img] Text - Published Version

URL: http://dx.doi.org/10.1016/j.jcis.2016.10.071

DOI: 10.1016/j.jcis.2016.10.071


The self-assembly of dilute aqueous solutions of a ternary surfactant mixture and rhamnolipid biosurfactant/surfactant mixtures has been studied by small angle neutron scattering. In the ternary surfactant mixture of octaethylene glycol monododecyl ether, C12E8, sodium dodecyl 6-benzene sulfonate, LAS, and sodium dioxyethylene monododecyl sulfate, SLES, small globular interacting micelles are observed over the entire composition and concentration range studied. The modelling of the scattering data strongly supports the assumption that the micelle compositions are close to the solution compositions. In the 5-component rhamnolipid/surfactant mixture of the mono-rhamnose, R1, di-rhamnose, R2, rhamnolipids with C12E8/LAS/SLES, globular micelles are observed over much of the concentration and composition range studied. However, for solutions relatively rich in rhamnolipid and LAS, lamellar/micellar coexistence is observed. The transition from globular to more planar structures arises from a synergistic packing in the 5 component mixture. It is not observed in the individual components nor in the ternary C12E8/LAS/SLES mixture at these relatively low concentrations. The results provide an insight into how synergistic packing effects can occur in the solution self-assembly of complex multi-component surfactant mixtures, and give rise to an unexpected evolution in the phase behaviour.

Item Type:Journal article
Keywords:Mixed surfactants Biosurfactants Self-assembly Mixed micelles Small angle neutron scattering
Faculties and Schools:Faculty of Life and Health Sciences > School of Biomedical Sciences
Faculty of Life and Health Sciences
Research Institutes and Groups:Biomedical Sciences Research Institute
Biomedical Sciences Research Institute > Pharmacy & Pharmaceutical Sciences
ID Code:36999
Deposited By: Professor Ibrahim Banat
Deposited On:06 Mar 2017 09:09
Last Modified:17 Oct 2017 16:27

Repository Staff Only: item control page