Ulster University Logo

The effects of 40 Hz low-pass filtering on the Spatial QRS-T Angle

Guldenring, Daniel, Finlay, Dewar, Bond, RR, Kennedy, Alan, McLaughlin, James and Moran, Kieran (2016) The effects of 40 Hz low-pass filtering on the Spatial QRS-T Angle. In: Computing in Cardiology 2016, Vancouver, Canada. IEEE Xplore. 4 pp. [Conference contribution]

[img] Text - Accepted Version
3MB
[img] Text - Other
53kB

Abstract

The spatial QRS-T angle (SA) is a vectorcardiographic (VCG) parameter that has been identified as a marker for changes in the ventricular depolarization and repolarization sequence. The SA is defined as the angle subtended by the mean QRS-vector and the mean T- vector of the VCG. The SA is typically obtained form VCG data that is derived from the resting 12-lead electrocardiogram (ECG). Resting 12-lead ECG data is commonly recorded using a low-pass filter with a cutoff frequency of 150 Hz. The ability of the SA to quantify changes in the ventricular depolarization and repolarization sequence make the SA potentially attractive in a number of different 12-lead ECG monitoring applications. However, the 12-lead ECG data that is obtained in such monitoring applications is typically recorded using a low-pass filter cutoff frequency of 40 Hz. The aim of this research was to quantify the differences between the SA computed using 40 Hz low- pass filtered ECG data (SA40) and the SA computed using 150 Hz low-pass filtered ECG data (SA150). We assessed the difference between the SA40 and the SA150 using a study population of 726 subjects. The differences between the SA40 and the SA150 were quantified as systematic error (mean difference) and random error (span of Bland-Altman 95% limits of agreement). The systematic error between the SA40 and the SA150 was found to be -0.126° [95% confidence interval: -0.146° to - 0.107°]. The random error was quantified 1.045° [95% confidence interval: 0.917° to 1.189°]. The findings of this research suggest that it is possible to accurately determine the value of the SA when using 40 Hz low-pass filtered ECG data. This finding indicates that it is possible to record the SA in applications that require the utilization of 40 Hz low-pass ECG monitoring filters.

Item Type:Conference contribution (Speech)
Keywords:Spatial QRS-T Angle, ECG, VCG, Digital signal processing
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Mathematics
Faculty of Computing & Engineering > School of Engineering
Research Institutes and Groups:Engineering Research Institute
Engineering Research Institute > Nanotechnology & Integrated BioEngineering Centre (NIBEC)
Computer Science Research Institute > Smart Environments
Computer Science Research Institute
ID Code:37471
Deposited By: Dr Daniel Guldenring
Deposited On:05 May 2017 09:56
Last Modified:17 Oct 2017 16:28

Repository Staff Only: item control page