Ulster University Logo

Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents

Polo-López, M. Inmaculada, García-Fernández, Irene, Velegraki, Theodora, Katsoni, Athanasia, Oller, Isabel, Mantzavinos, Dionissios and Fernandez Ibanez, P (2011) Mild solar photo-Fenton: An effective tool for the removal of Fusarium from simulated municipal effluents. Applied Catalysis B: Environmental, 111-11 . pp. 545-554. [Journal article]

Full text not available from this repository.

URL: http://dx.doi.org/10.1016/j.apcatb.2011.11.006

DOI: 10.1016/j.apcatb.2011.11.006

Abstract

In this work, the efficacy of natural solar radiation (up to 21.1 kJ/L of UV energy dose) combined with homogeneous iron (5 and 10 mg/L Fe2+ ) and/or hydrogen peroxide (10 and 20 mg/L) to treat a simu- lated municipal effluent in a solar bottle reactor was assessed. Emphasis was given on the inactivation of resistant spores with Fusarium solani serving as the test species in a matrix containing 25 mg/L of dissolved organic carbon, 65 mg/L of inorganic carbon and pH about 8. Processes like dark Fenton oxi- dation (5 mg/L Fe2+ and 10 mg/L H2 O2 at pH 3), solar radiation alone (at 21.1 kJ/L and pH 3–8) and H2 O2 oxidation alone (up to 20 mg/L in the dark) led to no or inadequate disinfection, thus showing the resis- tance of F. solani. Solar irradiation in the presence of 10 mg/L peroxide led to complete inactivation (i.e. ≤2 CFU/mL which is the detection limit) with 11.9 kJ/L at pH 3 and 16.9 kJ/L at pH 4–8, but no mineral- ization occurred. When the process was added 5 mg/L Fe2+ , complete inactivation required 17.1 kJ/L at pH 3 but this was accompanied by 36% mineralization. Interestingly, doubling the concentration iron and peroxide hindered inactivation but promoted mineralization; these results demonstrate a competi- tive effect between spores and the effluent organic matter for hydrogen peroxide, hydroxyl radicals and other ROS and highlight the importance of the nature of the microorganism. Finally, the implications for wastewater treatment are also discussed.

Item Type:Journal article
Keywords:Solar disinfection; Fusarium solon; Mineralization; Wastewater Competition
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Engineering
Research Institutes and Groups:Engineering Research Institute
Engineering Research Institute > Nanotechnology & Integrated BioEngineering Centre (NIBEC)
ID Code:37885
Deposited By: Dr Pilar Fernandez-Ibanez
Deposited On:16 May 2017 09:20
Last Modified:07 Nov 2017 18:32

Repository Staff Only: item control page