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Abstract— The recognition of brain evoked responses at the
single-trial level is a challenging task. Typical non-invasive
brain-computer interfaces based on event-related brain re-
sponses use eletroencephalograhy. In this study, we consider
brain signals recorded with magnetoencephalography (MEG),
and we expect to take advantage of the high spatial and
temporal resolution for the detection of targets in a series of
images. This study was used for the data analysis competition
held in the 20th International Conference on Biomagnetism
(Biomag) 2016, wherein the goal was to provide a method for
single-trial detection of even-related fields corresponding to the
presentation of happy faces during the rapid presentation of
images of faces with six different facial expressions (anger,
disgust, fear, neutrality, sadness, and happiness). The data-
sets correspond to 204 gradiometers signals obtained from four
participants. The best method is based on the combination of
several approaches, and mainly based on Riemannian geometry,
and it provided an area under the ROC curve of 0.956±0.043.
The results show that a high recognition rate of facial expres-
sions can be obtained at the signal-trial level using advanced
signal processing and machine learning methodologies.

I. INTRODUCTION

Brain-Computer Interfaces (BCIs) are mostly based on
electroencephalography (EEG) recordings. While there exists
the possibility to obtain a high spatial resolution with high
density EEG (e.g., 128 channels), it requires a long time for
the preparation of a user and can become an obstacle when
dealing with BCI for day-today usage. Moreover, where the
performance related to the detection of a command is the
most critical aspect, other types of brain imaging techniques
may be used, such as magnetoencephalography (MEG) that
has has several advantages over EEG signals [1]. MEG is
an efficient brain imaging technique that can enhance pre-
surgical planning by localizing relevant brain regions in
a non-invasive way. Compared to high density EEG, the
time to prepare a subject is significantly reduced because
there is no need to optimize the contact between the scalp
and the sensors. MEG is currently the best available non-
invasive brain imaging technique for research in human brain
dynamics [2]. MEG is however mainly used for clinical
studies and neuroscience research, and it recently got some
attention for neural engineering applications [3], [4].

This paper deals with the detection of facial expression
during a serial visual presentation task at the single-trial
level, where different images of faces with particular facial
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expressions are presented to the user. The main challenge
is to extract relevant features to differentiate between happy
faces from other faces. Different methods have been pro-
posed in the literature for single-trial detection [5]. This
type of task has been used with EEG recordings for the
detection of faces [6], and threat detection [7]. In addition to
the feat of brain decoding, the detection of particular facial
expressions can provide key insights about patients with
traumatic brain injury (TBI). Patients with TBI are indeed
found to be significantly impaired on expression labelling
and matching [8]. The single-trial detection of faces with a
particular expression may therefore provide a neuromarker
related to TBI. The remainder of this paper is organized
as follows: First, the experimental protocol is presented in
Section II, then the participants of the competition and the
results are given in Section III. Finally, the different methods
are detailed in Section IV.

II. EXPERIMENTAL PROTOCOL

Four healthy volunteers participated in the study
(age=31.5±5.6, 2 females). All participants provided written
informed consent, reported normal or corrected-to-normal
vision, and no history of neurological problems. The exper-
imental protocol was reviewed by the Faculty Ethics Filter
Committee of Ulster University, and was in accordance with
the Helsinki Declaration of 1975, as revised in 2000.

Visual stimuli consisted of grayscale images (335 × 419
pixel) from the FACES database (2052 images), which was
developed at the Max Planck Institute for Human Develop-
ment (MPIB), Berlin, Germany between 2005 and 2007 [9].
The images were centered on the screen (visual angle ≈ 20o).
Participants were seated comfortably 100 cm from the screen
in a darkened electromagnetically shielded chamber. They
were asked to avoid moving during the experiments to avoid
muscular artifacts. Participants had to pay attention to a
stream of images (presentation rate=1 Hz (stimulus onset
asynchrony=1000 ms, stimulus duration=333 ms)) (40 blocks
of 12 images, each block contains faces from the same per-
son, but with different facial expressions corresponding to 6
different classes: anger, disgust, fear, neutrality, sadness, and
happiness). The goal of the task was to detect the presence of
images with a happy facial expression, by pressing a button.
The goal of the data analysis is to detect the presence of a
face with happiness by using only the MEG signal and the
stimulus onsets.

The data was processed and available directly in the Mat-
lab format as a structure containing: the signal corresponding
to the 204 planar gradiometers, the stimulus onsets from the



images and the behavioral responses (triggers). The stimulus
onsets are given for each facial expression: t1: Anger (non-
target), t2: Disgust (non-target), t3: Fear (non-target), t4:
Happiness (target), t5: Neutrality (non-target), t6: Sadness
(non-target). The data analysis competition provided the
class labels of the stimuli for the first half of the recording
session, for each subject. The task of the competition was to
predict in which trials of the second half of the session, the
participant was presented a happy face, just from MEG data.
The evaluation was to be performed with the area under the
ROC curve (AUC). For training, there were 40 triggers for
each type of face, and for the test, there were 240 unlabelled
triggers (6 × 40).

A. Signal acquisition

The MEG signal was recorded with an Elekta Neu-
romag 306-channel MEG system in the Northern Ireland
Functional Brain Mapping (NIFBM) Facility of the Intel-
ligent Systems Research Centre (ISRC), Ulster University,
Derry/Londonderry, UK. The signal was recorded with a
sampling rate of 1 kHz using 204 planar gradiometers and
102 magnetometers. Five head position indicator (HPI) coils
were placed on the head of the participants to determine how
close the head is to the sensors that are collecting the sig-
nal. The Neuromag software Maxfilter 2.2 that implements
Signal-Space Separation (SSS) was used to preprocess the
signal [10]. The method separates magnetic signals coming
from within the brain from those coming from outside.
Finally, the signal was bandpass-filtered between 0.1 Hz and
41.66 Hz, and then downsampled to 125 Hz.

III. RESULTS

Six teams participated in this data analysis competition.
Each team provided a vector containing the classifier out-
puts for the 240 unlaballed epochs of each participant.The
composition of the teams are as followed: Team 1: Alexan-
dre Barachant and Jean-Remi King, from France. Team
2: Emanuele Olivetti and Paolo Avesani, NeuroInformatics
Laboratory (NILab), Bruno Kessler Foundation, Center for
Mind and Brain Sciences (CIMeC), University of Trento,
Italy. Team 3: Cristian Grozea, Fraunhofer Institute FOKUS,
Berlin, Germany. Team 4: Zafer Ican, Centre for Cognition
and Decision Making, National Research University, Higher
School of Economics, Russian Federation. Team 5: Andrea
Vitale, Institute for advanded study (IUSS), Pavia, Italy and
Christian Salvatore, National Research Council (CNR) at the
Institute of Molecular Bioimaging and Physiology (IBFM),
Milano, Italy. Team 6: Mohammed Abdulaal, School of EEE
The University of Manchester, UK.

The results are presented in Table I for each team. The best
method, from Team 1, provides an AUC of 0.956± 0.043.

IV. METHODS

Here, we discuss and highlight the superiority of the
single-trial detection approach adopted by the wining team.
The best approach consisted in ensembling three classifi-
cation pipelines built to extract both evoked and induced

TABLE I
AUC FOR EACH TEAM.

s1 s2 s3 s4 Mean SD Position
Team1 0.982 0.893 0.962 0.986 0.956 0.043 Gold
Team2 0.940 0.778 0.819 0.930 0.867 0.081 Silver
Team3 0.808 0.655 0.734 0.890 0.772 0.101 Bronze
Team4 0.756 0.559 0.577 0.745 0.659 0.106 4th
Team5 0.511 0.520 0.618 0.505 0.538 0.054 5th
Team6 0.524 0.498 0.545 0.466 0.508 0.034 6th

responses. This work relies on functions already available
in the toolboxes 1. The complete method is available on-
line [11]. For a comparative evaluation, the methods used
other teams are also briefly described.

A. Classification Pipelines

The three pipelines rely on Riemannian geometry clas-
sifiers fitted on the covariance matrices of each trial. These
pipelines made use of the tangent space mapping followed by
a logistic regression [12], [13]. The main difference among
these pipelines resides in the definition of the features space
and in the estimation of the covariance matrices.

a) Covariance estimation: Let Xi ∈ <C×N denote
an epoch (trial) of index i with C the number of channels
and N the number of time samples. Let be yi be the class
(target (happy) or non-target (not happy)) of Xi. The spatial
covariance matrix Σi ∈ <C×C of Xi is estimated using the
sample covariance matrix estimator (SCM):

Σi =
1

N
(Xi − x̄i) (Xi − x̄i)

T (1)

where x̄i ∈ <C is the average of the trial across time.
For each pipeline, the covariance estimation only varies
in the way Xi is built. To ensure that the matrices are
symmetric and positive definite (a requirement to use Rie-
mannian geometry), regularization can be applied on the
estimated covariances matrices. To this end, the Ledoit-wolf
Shrinkage [14] or the Oracle Approximation Shrinkage [15]
were used.

b) Tangent Space mapping: Riemannian geometry pro-
vides a natural way to manipulate and measure difference
between Symmetric Positive Definite matrices. Tangent space
mapping were used as a way to take into account the
manifold structure while having a vector-representation of
the matrices. For any covariance matrix Σi, we define its
“tangent vector” si ∈ <C(C+1)/2 as:

si = upper
(
log
(
Σ−1/2
µ ΣiΣ

−1/2
µ

))
(2)

where log is the matrix logarithm, upper is the operator
consisting in taking the upper triangular part of the matrix,
applying a coefficient

√
2 on its off-diagonal elements, and

vectorizing the results. Finally, Σµ is also a covariance
matrix, defining the reference point of the tangent space. This
reference point was chosen to be the log-Euclidean mean of
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all training data:

Σµ = exp

(
1

N

N∑
i

log(Σi)

)
(3)

1) ERPCov: This first pipeline is made of: 1) a decom-
position of the spatial filters with a Principal Component
Analysis (PCA) for dimensionality reduction (70 compo-
nents), 2) an estimation of the ERF Covariance to capture
both evoked and induce responses, 3) a Common Spatial
Pattern (CSP) to reduce the dimensionality of the covariance
matrices (30 components), 4) a mapping to the tangent space
(with log-euclidean mean as reference point) to meaningfully
vectorize the data, and 5) a penalized logistic regression for
the final classification stage. The ERPCov pipeline relies on
a special form of covariance matrix estimation that embeds
the temporal information about the evoked response. This
estimation consists in the concatenation, along the channel
axis, of the averaged ERF of each class before estimating
the spatial covariance matrix:

X̃i =

 Pt

Pnt

Xi

 (4)

where Pt and Pnt are the averaged (across trial) evoked
response for the target and non-target class, respectively. The
total dimension of the matrices is C̃ = 3×C = 3×70 = 210.
The resulting covariance matrix is thus composed by the
cross-covariance of the trial with the prototypical evoked
response of each class and by the standard covariance of the
trial. Consequently, if the trial Xi contains a target evoked re-
sponse synchronized to the prototypical target response, then
it will produce a specific cross-covariance structure with the
target prototype. If the trial contains a task-related induced
activity, the presence of the sample covariance matrice of Xi

will allow its detection. This type of covariance estimation
makes use of both evoked and induced responses within the
same pipeline.

2) XdawnCov: This pipeline is composed by 1) PCA for
dimensionality reduction (50 components), 2) XdawnERP
Covariance estimation, 3) Tangent space mapping (with log-
euclidean mean as reference point), and 4) logistic Re-
gression for the final classification stage. The XdawnCov
pipeline is similar to ERPCov, except that a Xdawn spatial
filtering [16], [17] is applied before the covariance estimation
in order to increase the SNR of the ERP response. For each
class, a set of Xdawn spatial filters are estimated and applied
on the data. Let Vt and Vnt ∈ <C×K be the spatial filters
corresponding to the class target and non target, respectively,
then we get:

X̃i =


VT
t Pt

VT
ntPnt

VT
t Xi

VT
ntXi

 (5)

In this pipeline, K = 12 Xdawn filters for each class
are used; the total dimension of the covariance matrices is
therefore C̃ = 4×K = 48.

3) HankelCov: This pipeline is made of 1) PCA for
dimensionality reduction (70 components), 2) Hankel Co-
variance estimation (delays 1, 8, 12 and 64 time samples), 3)
CSP for reduction of covariance matrices (15 components),
4) Tangent space mapping (with log-euclidean mean as
reference point), and 5) Logistic Regression for the final clas-
sification stage. This estimation is obtained by concatenating
multiple time-lagged versions of each trial. This estimation
detects the auto-correlation and the cross-correlation between
the channels, and it is similar to the Common Spatio-Spectral
Pattern algorithm.

X̃i =


δ(n1,Xi)

...
δ(nj ,Xi)

...
δ(nJ ,Xi)

 (6)

where δ(nj ,Xi) is an opperator that adds a lag of nj to the
data Xi. In this case, we chose a logarithmicaly spaced set
of five lags: 0, 1, 8, 12, 64. The dimension of the covariance
matrices is therefore C̃ = 5 ∗ C = 350.

B. Evaluation

Since the experimental design was not trully randomized,
but consisted in shuffled sequences of 12 faces (with two tar-
get in each group), a post-processing step on the predictions
was applied to ensure that the sum of probabilities of each
group of 12 trials was 1. The fusion of the three pipelines was
achieved by the summation of their individual predictions. To
further improve the robustness of the classification, and to
reduce overfitting, results for different set of epoching offset
: 10, 20, 30, 40 and 50 time samples with a constant window
of 150 time samples were also combined [18]. With a first
evalation on the training (10-fold cross-validation), the best
pipeline was ERPCov with an average AUC of 0.972. The
averaged scores of the 3 classifiers lead to an AUC score of
0.979.

C. Other teams

1) Team 2: The method comprises three stages. First,
each epoch is represented as the covariance matrix of the
signals measured by 204 MEG gradiometers. Second, each
covariance matrix is represented in the tangent space of the
associated Riemannian manifold [12], [13]. Third, the output
is obtained with a logistic regression classifier. The time
window started at 120ms (15 time points ) from the stimulus
onset, and lasted until 1320 ms (165 time points) from
stimulus onset. Such values were defined in order to take
into account high-level visual processing and premotor/motor
activation during the experiment. With a 10-fold cross-
validated ROC AUC over the training set of each subject,
the average of the AUC across subjects was 0.93.

2) Team 3: For the preprocessing steps, the first ten
principal components were extracted, the signal was filtered
with a low-pass Butterworth filter of order 6 and cut-off
frequency 4 Hz. In each epoch, the chosen time window was



1800 ms after stimulus onset. The classifier was a random
forest [19].

3) Team 4: Noisy channels were removed by analyzing
the raw data and power spectra of the MEG channels after
filtering the signal with band-stop (45-55 Hz) and band-
pass (1-49 Hz) filters. In the preprocessed dataset, after
detrending the data, the signal was filtered with a 2nd degree
Butterworth band-pass filter (0.58 Hz). For the classification,
the window length was chosen as 80 samples (640 ms) for the
responses. Then, the T-Weight method was used after using
Principal Component Analysis (PCA) to remove correlations
in the data [20].

4) Team 5: For each epoch, the chosen time window
was 800 ms after stimulus onset, corresponding to 100 time
points. The number of trials equalized across conditions:
40 for target and non-target. Feature selection was achieved
with a 10 fold cross validation procedure. For each fold,
35 features were extracted with PCA, followed by Fisher
Discriminant Ratio (9 features). The classification step was
based on Support Vector Machine fitted to all the possible
combination of the selected features, with testing on the
remaining 1/K of the training data. The most accurate
classifier’s parameters are applied to predict the unlabelled
epochs.

5) Team 6: This hierarchical approach is decomposed into
two stages. First, the classification is performed by classify-
ing (Sadness, Anger and Fear) versus (Disgust, Neutrality
and Happiness). In the second stage, the classification is
performed with (Disgust, Neutrality) versus and Happiness.
In both stages, the signal from each electrode was substracted
from its following electrode to form a signal with 102
channels. Then, the common spatial patterns method was
used, and only the best 6 spatial filters were used to extract
features. The classification was achieved with a fitted linear
discriminant analysis function.

V. CONCLUSION

Brain decoding at the single-trial level represents a fun-
damental challenge for machine learning and neuroscience,
with significant impact in neural engineering. The best
method was based on a multiple-classifier system using a
hierarchy of pre-processing steps, with features based on
Riemannian geometry, and taking into account the underlying
manifold of the data. The extent to which the motor response
had a contribution in the facial expressions detection has to
be investigated. Further work will be carried out with a larger
number of the subjects to determine neuromarkers related to
face detection with particular emotions.
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