EEG-EMG based Hybrid Brain Computer Interface for Triggering Hand Exoskeleton for Neuro-Rehabilitation

Anirban Chowdhury, IIT Kanpur
Haider Raza, Ulster University, U.K.
Ashish Dutta, IIT Kanpur
Girijesh Prasad, Ulster University, U.K.
Stroke Rehabilitation

• World Wide Scenario
 ✓ 15 million new cases each year world wide.
 ✓ 50 million living with the consequences of stroke
 ✓ 50% of them have some form of permanently disability

• Key Challenges
 ✓ Lack of trained professionals who can provide stroke rehabilitation.
 ✓ The existing therapies are not effective as they are passive in nature and fail to engage patient’s attention with the therapeutic task.
Motivation and Objective

• Motivation
 ✓ Robots can provide intense repetitive rehabilitation therapy with less or no intervention from a human therapist
 ✓ Robotic therapy can give quantitative measurement of patient’s involvement with the task
 ✓ Robotic therapy can employ different biological signals (such as EEG, EMG etc.) to enhance patient’s active involvement to promote neuroplasticity.

• Objective:
 The objective is to build a hand exoskeleton based rehabilitation system which can be trigged by an functional interaction between brain (EEG) and muscle (EMG) signal.
System Overview

Fig. 1 Basic block diagram of a Hybrid BCI system using EEG and EMG signals

Fig. 2 Experimental environment.

Fig. 3 Timing diagram of a trial.

Fig. 4 CAD model of the developed hand exoskeleton.
Feature Extraction: EEG-EMG Spectral Power Correlation (SPC)

Fig. 5 The block diagram of the SPC Index calculation process

\[SPC_i = |\rho(smEEG_i, smEMG_i)| \]

Fig. 6 The signal transformation of EEG and EMG during the SPC index calculation steps
Experimental Paradigm

Figure 7. Signal processing flow chart showing the difference between (a)EEG-CSP and (b)EEG-EMG SPC
Results

Table 1. Classification Accuracy Comparison

<table>
<thead>
<tr>
<th>Sub ID</th>
<th>EEG-CSP</th>
<th>EEG-EMG SPC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10CV_Tr_Acc (%)</td>
<td>Feedback_Acc (%)</td>
</tr>
<tr>
<td>S01</td>
<td>73.75</td>
<td>80.00</td>
</tr>
<tr>
<td>S02</td>
<td>73.75</td>
<td>85.00</td>
</tr>
<tr>
<td>S03</td>
<td>88.75</td>
<td>90.00</td>
</tr>
<tr>
<td>S04</td>
<td>83.75</td>
<td>75.00</td>
</tr>
<tr>
<td>S05</td>
<td>73.75</td>
<td>75.00</td>
</tr>
<tr>
<td>S06</td>
<td>77.50</td>
<td>75.00</td>
</tr>
<tr>
<td>S07</td>
<td>70.00</td>
<td>82.50</td>
</tr>
<tr>
<td>S08</td>
<td>66.25</td>
<td>85.00</td>
</tr>
<tr>
<td>S09</td>
<td>65.00</td>
<td>77.50</td>
</tr>
<tr>
<td>S10</td>
<td>67.50</td>
<td>72.50</td>
</tr>
<tr>
<td>Mean</td>
<td>74.00</td>
<td>79.75</td>
</tr>
<tr>
<td>Std</td>
<td>7.63</td>
<td>5.71</td>
</tr>
</tbody>
</table>

p-value (Between Feedback Acc of EEG-CSP and EEG-EMG SPC) = 0.002

Fig. 8 Classification accuracy comparison of the methods in feedback phase

Fig. 9 SPC index distribution of different channel combinations in rest (R) and grasp-attempt (G) classes in feedback phase
Conclusion

• A new combined EEG-EMG feature (SPC) has been introduced.

• All the participants were able to successfully triggered the hand exoskeleton with high accuracy, indicating its potential to be used for patients also.

• The proposed method out performed the conventional only EEG based CSP method.

• The SPC index also gives insight into the level cortico-muscular interaction.

• Future works are in progress to use the EEG-EMG SPC feature to get rehabilitative outcomes, by carrying out clinical trials on hemiparetic patients.
Acknowledgement

This work is supported by DST-UKIERI thematic partnership project “A BCI operated hand exoskeleton based neuro rehabilitation system for movement restoration in paralysis” in collaboration with IIT Kanpur, India and Ulster University, Northern Ireland, U.K.