HIERARCHICAL FINITE ELEMENT BASED MULTISCALE COMPUTATIONAL HOMOGENISATION OF COUPLED HYGRO-MECHANICAL ANALYSIS FOR FIBRE-REINFORCED POLYMERS

Zahur Ullah
Łukasz Kaczmraczyk and Chris Pearce

Infrastructure and Environment Research Division
School of Engineering, University of Glasgow
Introduction (DURACOMP)

Multi-scale modelling

Model components (multiscale and multiphysics):
- Generalised RVE boundary conditions
- Transient field problems
- Degradation model
- Computational framework

Numerical example

Summary
DURACOMP: Providing Confidence in Durable Composites

Investigation of long-term degradation
an integrated program of computational modelling and physical testing

Involves six universities
Bath, Bristol, Glasgow, Leeds, Newcastle and Warwick

Objectives

Multi-scale analysis framework
confidence in durable composite structures

Reliability analysis
for composites subject to epistemic and stochastic uncertainties

Structural-level characterisation tests
properties required for the lifetime prediction analyses

New paradigm of testing and analysis methods
To assess composites over service lives

1. Journal
 • Perturbation based stochastic multiscale computational homogenization method for composites
 Formulaing perturbation based homogenization method
 Numerical comparison statistics of elasticity property by perturbation based SFEM with Monte Carlo simulation

2. Conference
 • 12th International Conference on Applications of Statistics and Probability in Civil Engineering, Vancouver, 2015
 [Deadline: June 2014 (Abstract); December 19 2014 (Full paper)]
 [Paper to be prepared]
 Sensitivity study for the homogenized elasticity properties of composites
 Uncertainty categorization and quantification analysis for stochastic reliability analysis of composites

WP3
Next stage plan (March 2014 – July 2014)…
DURACOMP
Providing Confidence in Durable Composites

Investigation of long-term degradation
an integrated program of computational modelling and physical testing

Involves six universities
Bath, Bristol, Glasgow, Leeds, Newcastle and Warwick

Objectives

Multi-scale analysis framework
certainty in durable composite structures

Reliability analysis
for composites subject to epistemic and stochastic uncertainties

Structural-level characterisation tests
properties required for the lifetime prediction analyses

New paradigm of testing and analysis methods
To assess composites over service lives
Multi-scale Modelling

- Predict and describe macroscopic material behaviour by considering the mechanics of the underlying microstructure.

- FE\(^2\), because it requires the simultaneous computation of the mechanical (thermal or moisture transport) response at two different scale.

- Advantages:
 - No explicit assumptions for the macroscopic local constitutive equations.
 - Incorporation of detailed microstructural information, including physical and geometrical evolution of the microstructures.
 - Different modelling techniques can be used on both micro- and macro-level, e.g. FEM, BEM, meshless method.
Definition of macrostructural B.V.P.

Definition of a microstructural representative volume element (RVE).
(with known constitutive behaviour of individual constituents)

Formulation of the microstructural boundary conditions.
(macro-to-micro transition or localization)

Solution of microstructural B.V.P.

Calculation of the macrostructural output variables.
(micro-to-macro transition or homogenization)
Generalised imposition of different RVE boundary conditions (displacement, traction and periodic) [1].

Discretised system of equations

\[
Ku + C^T \lambda = 0 \\
Cu = D\bar{\varepsilon}
\]

where

\[
C = \int_{\Gamma} HN^T N d\Gamma \quad \text{and} \quad D = \int_{\Gamma} HN^T \mathbf{X} d\Gamma
\]

Homogenised stress

\[
\bar{\sigma} = \frac{1}{V} D^T \lambda.
\]

Model Components

RVE boundary conditions

Conduction and diffusion models are considered for thermal and moisture transport problems (conservation of mass or energy for moisture and thermal problem respectively).

\[
\rho c_p \frac{\partial \psi}{\partial t} = K_x \frac{\partial^2 \psi}{\partial x^2} + K_y \frac{\partial^2 \psi}{\partial y^2} + K_z \frac{\partial^2 \psi}{\partial z^2},
\]

Where

\[
\psi = T, c \quad \text{(scalar fields)}
\]

\[
t \quad \text{time}
\]

\[
\rho \quad \text{density}
\]

\[
c_p \quad \text{specific volume capacity}
\]

\[
K_\psi \quad \text{conductivity}
\]
Experiments involves accelerated ageing with exposure temperatures of 25°C, 40°C, 60°C and 80°C and recording time of 28, 56, 112 days.

An exponential trend is assumed for the degradation of shear modulus for all the exposure temperatures

\[G|_T = G_0 e^{-\alpha t} \]

\[G|_T = \begin{cases}
G_0 e^{-0.0023t} & \text{for } T = 25°C \\
G_0 e^{-0.0027t} & \text{for } T = 60°C \\
G_0 e^{-0.0040t} & \text{for } T = 80°C
\end{cases} \]
- Generalised degradation model
 \[G(T, t) = G_o e^{-\alpha(T)t}, \text{ where } \alpha(T) = \beta \ln \left(1 - \frac{T}{T_g}\right) \]

- Using least square fitting, i.e. minimising the following eq w.r.t \(\beta \)
 \[F(\beta) = \sum_{i=1}^{3} \left(\alpha_i - \beta \ln \left(1 - \frac{T_i}{T_g}\right) \right)^2 \]
 \(\beta = 0.001682 \)

- Including effect of moisture concentration
 \[G(T, c, t) = G_o e^{-\gamma(c)\alpha(T)t} \]
 \[G(T, c, t) = G_o e^{-c\beta \ln \left(1 - \frac{T}{T_g}\right)t} \]
Constant temperature and moisture concentration are assumed in the derivation of degradation model. \[G(T, c, t) = G_o e^{-c \beta \ln \left(1 - \frac{T}{T_g}\right)} t \]

Assuming real scenarios of variable temperature and moisture concentration, degradation model is written in rate form as

\[\frac{d}{dt} G(T, c, t) = \frac{\partial G}{\partial T} T' + \frac{\partial G}{\partial c} c' + \frac{\partial G}{\partial t} \]

Assuming chemical reaction leading to degradation of mechanical properties is very slow as compared to daily variation of temperature and moisture concentration

\[\frac{d}{dt} G(T, c, t) = \frac{\partial G}{\partial T} T' + \frac{\partial G}{\partial c} c' + \frac{\partial G}{\partial t} \]

Generalised degradation model

\[\frac{d}{dt} (1 - \omega) = -c \beta \ln \left(1 - \frac{T}{T_g}\right) (1 - \omega) \]

\[\omega = 0 \quad \text{no degradation} \]

\[\omega = 1 \quad \text{fully degradation} \]
For the macro-level structure, a three-dimensional block of material is considered. The macro-structure and RVE are discretised with 10285 elements and 2364 nodes, which is the case of the RVE. For the macro-level thermal problem, the bottom surface is fixed while a constant traction of 1000 MPa is applied to the top surface and constant heat flux is applied to the left side of the macro-block.

Thermal conductivity, density, and specific heat of the block are fully fixed, while a constant traction of 1000 MPa is applied to the top surface and constant heat flux is applied to the left side of the macro-block. Due to its higher value of heat conductivity, moisture concentration of 7 days for total of 110 days. At the end of the simulation, temperature and vertical displacement are used, while the corresponding values used for the fibres are 1000, 1.46, and 2.8 respectively.

Moreover, a Moisture transport analysis of degradation parameter $1/(1 - \omega)$ is calculated for each mechanical RVE and pass back on the macro-mesh. Temperature and moisture concentration fields are approximated as $T_0 + \omega T_1$ and $C_0 + \omega C_1$ respectively.

Homogenised value of K_T for $\overline{K_T}$.

Homogenised value of K_c for $\overline{K_c}$.

Macro transient thermal analysis

Macro transient diffusion analysis

Macro mechanical analysis at selected time steps

Mechanical RVE

$C_{\text{matrix}} = (1 - \omega)C_{\text{matrix}}$
Numerical Example
Geometries, meshes and BCs

- Simulation time = 1000 days
- Number of time steps = 100
- Mechanical problem was run for every 10th step

Macro structure geometry
Macro structure mesh (780 elements)
Representative volume element (10285 elements)
Matrix as isotropic material

(2 elastic constants) E, ν

Fibres as transversely isotropic material

(5 elastic constants) E_p, ν_p, E_z, ν_{pz}, G_{pz}

A potential flow problem is described by

$$\nabla^2 \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} + \frac{\partial^2 \varphi}{\partial z^2} = 0$$

Velocity is a vector

$$\mathbf{v} = \nabla \varphi$$

Rotation of stiffness matrix

$$C^* = T_{\sigma} C T_{\epsilon}^{-1}$$
Numerical Example

RVE convergence studies

Thermal & Moisture Transport RVEs

<table>
<thead>
<tr>
<th>Order</th>
<th>DOFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,364</td>
</tr>
<tr>
<td>2</td>
<td>16,214</td>
</tr>
<tr>
<td>3</td>
<td>51,836</td>
</tr>
</tbody>
</table>

Mechanical RVE

<table>
<thead>
<tr>
<th>Order</th>
<th>DOFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,092</td>
</tr>
<tr>
<td>2</td>
<td>48,642</td>
</tr>
<tr>
<td>3</td>
<td>155,508</td>
</tr>
</tbody>
</table>
Numerical Example

Results

Moisture concentration
Temperature (°C)
(1 − ω) field
Vertical displacement (mm)

Moisture concentration vs. Time (days)

Temperature (°C) vs. Time (days)

(1 − ω) vs. Time (days)

Relative displacement (mm) vs. Time (days)
Numerical Example

Undeformed and deformed RVEs

Deformed RVEs at the end of simulation
A fully generalised mechanical degradation model has been developed for FRP composites subjected to hygro-thermal environmental conditions based on the experimental data (from our project partner).

A coupled hygro-thermo-mechanical (considering only one-way coupling) computational framework based on multiscale (FE\(^2\)) computational homogenisation, incorporating degradation model is developed and implemented in our group’s FE software MoFEM.

The developed computational framework have the flexibility of

- Arbitrary order of approximation (hierarchic basis functions)
- Generalized boundary conditions
- PETSc and MOAB libraries
- Parallel processing.