Ulster University Logo

Temporal Probabilistic Concepts from Heterogeneous Data Sequences

McClean, SI, Scotney, BW and Palmer, FL (2002) Temporal Probabilistic Concepts from Heterogeneous Data Sequences. In: Soft-ware 2002: Computing in an Imperfect World, Belfast, Northern Ireland. Springer-Verlag. 15 pp. [Conference contribution]

Full text not available from this repository.

DOI: 10.1007/3-540-46019-5_15


We consider the problem of characterisation of sequences of heterogeneous symbolic data that arise from a common underlying temporal pattern. The data, which are subject to imprecision and uncertainty, are heterogeneous with respect to classification schemes, where the class values differ between sequences. However, because the sequences relate to the same underlying concept, the mappings between values, which are not known ab initio, may be learned. Such mappings relate local ontologies, in the form of classification schemes, to a global ontology (the underlying pattern). On the basis of these mappings we use maximum likelihood techniques to handle uncertainty in the data and learn local probabilistic concepts represented by individual temporal instances of the sequences. These local concepts are then combined, thus enabling us to learn the overall temporal probabilistic concept that describes the underlying pattern. Such an approach provides an intuitive way of describing the temporal pattern while allowing us to take account of inherent uncertainty using probabilistic semantics.

Item Type:Conference contribution (Paper)
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Information Engineering
Research Institutes and Groups:Computer Science Research Institute
Computer Science Research Institute > Information and Communication Engineering
ID Code:6772
Deposited By: Professor Bryan Scotney
Deposited On:22 Jan 2010 10:14
Last Modified:20 Jun 2011 15:22

Repository Staff Only: item control page