Treating soft tissue injuries with protection, rest, ice, compression and elevation has been the mantra of physiotherapists for many years. Commonly shortened by the acronym ‘PRICE’, this approach is also widely accepted by layman as an essential component of first aid practice. O’Sullivan and Keane’s interesting survey of female Gaelic footballers published in the current issue of Physiotherapy Ireland, sought to determine the depth of athletes’ knowledge on using PRICE for self-management of soft tissue injuries. Although most of the participants were aware of its basic concept, there were wide variations in practice, particularly regarding the choice of dosage, and the optimal modality combination. Given that none of the athletes included in the survey were medically qualified, we might have anticipated the observed variation in O’Sullivan and Keane’s results. What may be more surprising however, is that similar surveys conducted on physiotherapists and other medical practitioners, have also yielded disjointed results.

So why is there such a lack of consensus when it comes to treating acute soft tissue injuries? O’Sullivan and Keane suggest that shortcomings in the evidence base are undoubtedly a factor. Indeed, the majority of clinical studies in this particular area lack internal validity and few have considered or reported adequate details on treatment dose. However, a lack of good quality randomised controlled trials may just tip the ice pack (berg)! Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained.

For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation constantly in the clinic when referring to acute injuries. According to O’Sullivan and Keane, this approach is also widely accepted by layman as an essential component of first aid practice. The term inflammation is commonly shortened by the acronym ‘PRICE’, which stands for protection, rest, ice, compression and elevation. This approach is also widely accepted by layman as an essential component of first aid practice.

However, a lack of good quality randomised controlled trials may just tip the ice pack (berg)! Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explained. For many clinicians, their rationale for using modalities such as ice and compression after an injury is simply that it controls inflammation. Applying a cold compress on an injury that is hot, red and swollen is commonsensical; but it clearly overlooks other potentially important physiological, cellular and molecular events. We use the term inflammation constantly in the clinic when referring to acute injuries; however, a lack of good quality randomised controlled trials may just tip the ice pack (berg)!

Delving into the preclinical research in this area also shows that a number of seemingly basic concepts cannot be fully explain...
optimal protocol for ice application beyond conjecture. Similarly, deciding on the most effective compression bandage or quantifying how much rest to advice, is also challenging. O’Sullivan and Keane’s1 study provides further evidence that developing clearer evidence based guidelines for PRICE is an important aim for the future. However, given the complexity of contemporary models of inflammation, we must also consider if is still realistic to produce one set of definitive guidelines to suit every type of soft tissue injury? Furthermore, we must consider that by recommending PRICE, we are recommending a combination of different treatment modalities each with their own unique molecular, cellular, physiological and clinical effects.

Correspondence to: Dr Chris Bleakley.
Email: chrisbleakley@hotmail.com

REFERENCES