Ulster University Logo

A Fusion of Stacking with Dynamic Integration

Rooney, NF and Patterson, WD (2007) A Fusion of Stacking with Dynamic Integration. In: 20th International Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad, India. IJCAI. 6 pp. [Conference contribution]

Full text not available from this repository.


In this paper we present a novel method that fuses the ensemble meta-techniques of Stack-ing and Dynamic Integration (DI) for regres-sion problems, without adding any major computational overhead. The intention of the technique is to benefit from the varying per-formance of Stacking and DI for different da-ta sets, in order to provide a more robust technique. We detail an empirical analysis of the technique referred to as weighted Meta –Combiner (wMetaComb) and compare its performance to Stacking and the DI technique of Dynamic Weighting with Selection. The empirical analysis consisted of four sets of experiments where each experiment recorded the cross-fold evaluation of each technique for a large number of diverse data sets, where each base model is created using random feature selection and the same base learning al-gorithm. Each experiment differed in terms of the latter base learning algorithm used. We demonstrate that for each evaluation, wMetaComb was able to outperform DI and Stacking for each experiment and as such fuses the two underlying mechanisms suc-cessfully.

Item Type:Conference contribution (Poster)
Faculties and Schools:Faculty of Computing & Engineering
Faculty of Computing & Engineering > School of Computing and Mathematics
Research Institutes and Groups:Computer Science Research Institute
Computer Science Research Institute > Artificial Intelligence and Applications
ID Code:8635
Deposited By: Dr Niall Rooney
Deposited On:29 Sep 2011 09:16
Last Modified:29 Sep 2011 09:16

Repository Staff Only: item control page